Another issue not addressed by time-averaged dosimetry is the importance of low frequency modulations on biological systems. As discussed under assumption #2, increased production of ROS in living cells and DNA damage have been demonstrated with exposure to low frequency modulations of radiofrequency carrier waves [106]. Exposure limits based on time-averaged SAR dosimetry or power density, without consideration of the impact of amplitude or frequency modulations, do not adequately address potential health effects of real-world exposures to RFR. There is ample evidence that various effects of RFR exposure depend on carrier wave modulations, frequency, or pulsing [43, 107, 108]. In contrast to ICNIRP/FCC, the IARC monograph on RFR carcinogenicity noted that RFR effects may be influenced by such exposure characteristics as duration of exposure, carrier frequency, type of modulation, polarization, exposure intermittence, and background electromagnetic fields [44].
Limits Of Power Moon Epub
To develop health-based exposure limits for toxic and carcinogenic substances, regulatory agencies typically rely on available scientific evidence about the agent under review. In the mid- and late-1990s when the FCC [4] and the ICNIRP [9] initially established exposure limits for RFR, the prevailing assumptions were that any adverse effects from exposure to RFR were due to excessive heating because non-ionizing radiation did not have sufficient energy to break chemical bonds or damage DNA. However, non-thermal effects of RFR are demonstrated from studies that find different effects with exposure to continuous waves versus pulsed or modulated waves at the same frequency and the same SAR or power density, e.g., [221,222,223,224,225,226], and from studies that show adverse effects at very low exposure intensities, e.g., [78, 96]. 2ff7e9595c
Comments